The Combinatorics of Interval Vector Polytopes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Combinatorics of Interval Vector Polytopes

An interval vector is a (0, 1)-vector in Rn for which all the 1’s appear consecutively, and an interval-vector polytope is the convex hull of a set of interval vectors in Rn. We study three particular classes of interval vector polytopes which exhibit interesting geometric-combinatorial structures; e.g., one class has volumes equal to the Catalan numbers, whereas another class has face numbers ...

متن کامل

Interval-Vector Polytopes

An interval vector is a (0, 1)-vector where all the ones appear consecutively. Polytopes whose vertices are among these vectors have some astonishing properties that are highlighted in this paper. We present a number of interval-vector polytopes, including one class whose volumes are the Catalan numbers and another class whose face numbers mirror Pascal’s triangle.

متن کامل

Math 669: Combinatorics of Polytopes

These are rather condensed notes, not really proofread or edited, presenting key definitions and results of the course that I taught in Winter 2010 term. Problems marked by ◦ are easy and basic, problems marked by ∗ may be difficult. Typeset by AMS-TEX 1

متن کامل

Geometry, Complexity, and Combinatorics of Permutation Polytopes

Each group G of permutation matrices gives rise to a permutation polytope P(G) = cony(G) c Re×d, and for any x ~ W, an orbit polytope P(G, x) = conv(G, x). A broad subclass is formed by the Young permutation polytopes, which correspond bijectively to partitions 2 = (21, ..., 2k)~-n of positive integers, and arise from the Young representations of the symmetric group. Young polytopes provide a f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2013

ISSN: 1077-8926

DOI: 10.37236/2997